Multiple Shooting for Training Neural Differential Equations on Time Series
نویسندگان
چکیده
Neural differential equations have recently emerged as a flexible data-driven/hybrid approach to model time-series data. This work experimentally demonstrates that if the data contains oscillations, then standard fitting of neural equation may result in flattened out trajectory fails describe We introduce multiple shooting method and present successful demonstrations this for two datasets (synthetic experimental) fit. Constraints introduced by can be satisfied using penalty or augmented Lagrangian method.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Theory of hybrid differential equations on time scales
In this paper, we develop the theory of hybrid differential equations on time scales. An existence theorem for hybrid differential equations on time scales is given under Lipschitz conditions. Some fundamental fractional differential inequalities are also established which are utilized to prove the existence of extremal solutions. Necessary tools are considered and the compa...
متن کاملParameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting.
In silico investigations by simulating dynamical models of biochemical processes play an important role in systems biology. If the parameters of a model are unknown, results from simulation studies can be misleading. Such a scenario can be avoided by estimating the parameters before analysing the system. Almost all approaches for estimating parameters in ordinary differential equations have eit...
متن کاملTime Series Prediction Based on Multiple Artificial Neural Network
Time series prediction is a challenging research area with broad application prospects. Accurate time series prediction can provide important information for the relevant decision-makers. Many works extended different architecture of artificial neural networks to work with time series prediction, but they mostly only consider the time series itself, does not weigh the impact of relevant time se...
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Control Systems Letters
سال: 2022
ISSN: ['2475-1456']
DOI: https://doi.org/10.1109/lcsys.2021.3135835